The relationship between glucocerebrosidase mutations and Parkinson disease
نویسندگان
چکیده
Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer disease, whereas Gaucher disease (GD) is the most frequent lysosomal storage disorder caused by homozygous mutations in the glucocerebrosidase (GBA1) gene. Increased risk of developing PD has been observed in both GD patients and carriers. It has been estimated that GBA1 mutations confer a 20- to 30-fold increased risk for the development of PD, and that at least 7-10% of PD patients have a GBA1 mutation. To date, mutations in the GBA1 gene constitute numerically the most important risk factor for PD. The type of PD associated with GBA1 mutations (PD-GBA1) is almost identical to idiopathic PD, except for a slightly younger age of onset and a tendency to more cognitive impairment. Importantly, the pathology of PD-GBA1 is identical to idiopathic PD, with nigral dopamine cell loss, Lewy bodies, and neurites containing alpha-synuclein. The mechanism by which GBA1 mutations increase the risk for PD is still unknown. However, given that clinical manifestation and pathological findings in PD-GBA1 patients are almost identical to those in idiopathic PD individuals, it is likely that, as in idiopathic PD, alpha-synuclein accumulation, mitochondrial dysfunction, autophagic impairment, oxidative and endoplasmic reticulum stress may contribute to the development and progression of PD-GBA1. Here, we review the GBA1 gene, its role in GD, and its link with PD. The impact of glucocerebrosidase 1 (GBA1) mutations on functioning of endoplasmic reticulum (ER), lysosomes, and mitochondria. GBA1 mutations resulting in production of misfolded glucocerebrosidase (GCase) significantly affect the ER functioning. Misfolded GCase trapped in the ER leads to both an increase in the ubiquitin-proteasome system (UPS) and the ER stress. The presence of ER stress triggers the unfolded protein response (UPR) and/or endoplasmic reticulum-associated degradation (ERAD). The prolonged activation of UPR and ERAD subsequently leads to increased apoptosis. The presence of misfolded GCase in the lysosomes together with a reduction in wild-type GCase levels lead to a retardation of alpha-synuclein degradation via chaperone-mediated autophagy (CMA), which subsequently results in alpha-synuclein accumulation and aggregation. Impaired lysosomal functioning also causes a decrease in the clearance of autophagosomes, and so their accumulation. GBA1 mutations perturb normal mitochondria functioning by increasing generation of free radical species (ROS) and decreasing adenosine triphosphate (ATP) production, oxygen consumption, and membrane potential. GBA1 mutations also lead to accumulation of dysfunctional and fragmented mitochondria. This article is part of a special issue on Parkinson disease.
منابع مشابه
Parkinsonism among Gaucher disease carriers.
An association between Gaucher disease and Parkinson disease has been demonstrated by the concurrence of Gaucher disease and parkinsonism in rare patients and the identification of glucocerebrosidase mutations in probands with sporadic Parkinson disease. Using a different and complementary approach, we describe 10 unrelated families of subjects with Gaucher disease where obligate or confirmed c...
متن کاملThe Complicated Relationship between Gaucher Disease and Parkinsonism: Insights from a Rare Disease
The discovery of a link between mutations in GBA1, encoding the lysosomal enzyme glucocerebrosidase, and the synucleinopathies directly resulted from the clinical recognition of patients with Gaucher disease with parkinsonism. Mutations in GBA1 are now the most common known genetic risk factor for several Lewy body disorders, and an inverse relationship exists between levels of glucocerebrosida...
متن کاملEndoplasmic reticulum and lysosomal Ca²⁺ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts.
Mutations in β-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca(2+) release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S...
متن کاملAmbroxol effects in glucocerebrosidase and α‐synuclein transgenic mice
OBJECTIVE Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients carry glucocerebrosidase 1 mutations. Ambroxol is a small ...
متن کاملComplete screening for glucocerebrosidase mutations in Parkinson disease patients from Portugal.
Mutations in the gene encoding beta-glucocerebrosidase, a lysosomal degrading enzyme, have recently been associated with the development of Parkinson disease. Here we report the results found in a cohort of Portuguese Parkinson disease patients and healthy age-matched controls for mutations in the aforementioned gene. This screening was accomplished by sequencing the complete open-reading frame...
متن کاملGlucocerebrosidase is shaking up the synucleinopathies.
The lysosomal enzyme glucocerebrosidase, encoded by the glucocerebrosidase gene, is involved in the breakdown of glucocerebroside into glucose and ceramide. Lysosomal build-up of the substrate glucocerebroside occurs in cells of the reticulo-endothelial system in patients with Gaucher disease, a rare lysosomal storage disorder caused by the recessively inherited deficiency of glucocerebrosidase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 139 شماره
صفحات -
تاریخ انتشار 2016